

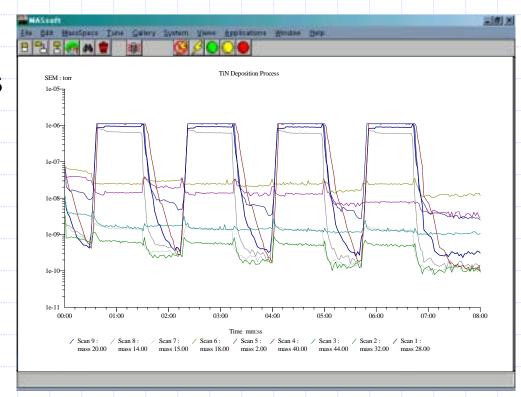
HPR30 Series Orifice Sampling Process Gas Analysers

HPFI-30

IPFI
IPFI-

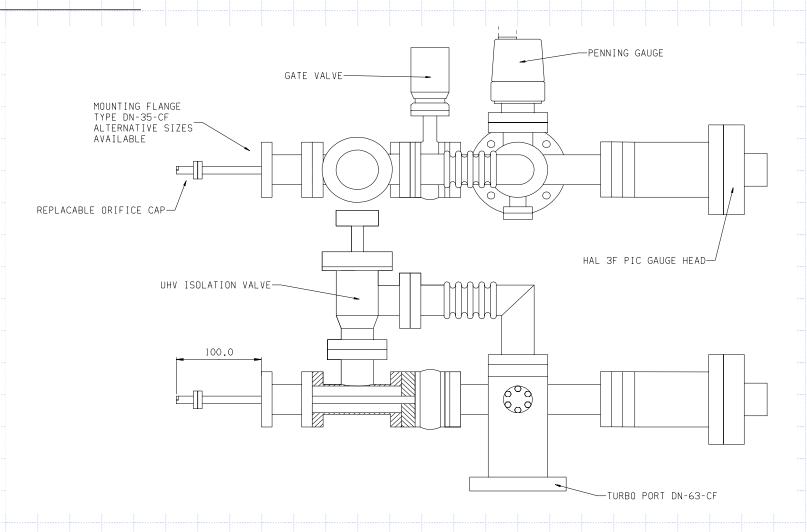
Residual Gas Analysis for Vacuum Process Analysis

- Pumpdown Profiles
- Vacuum Diagnostics
- Base Pressure Residuals
- Leak Checking


re-Entrant Sampling Orifice

Thin Film Deposition Monitoring HPR-30

- Pumpdown Profiles
- Vacuum Diagnostics
- Base Pressure
- Residuals
- Backfill
- Sputter-On
- Bake-Out
- Leak Checking



Vacuum process sampling

- To analyse processes operating at pressures >10-4Torr it is necessary to pump the RGA with its own pumping group and sample the process through a sampling connection.
- The sampling connection to the process chamber should be optimised to maintain fast response time and maximum sensitivity.
- The HPR30 uses an orifice inserted into the process chamber with a high conductance path from orifice to RGA. A gate valve is used to isolate the RGA from process.

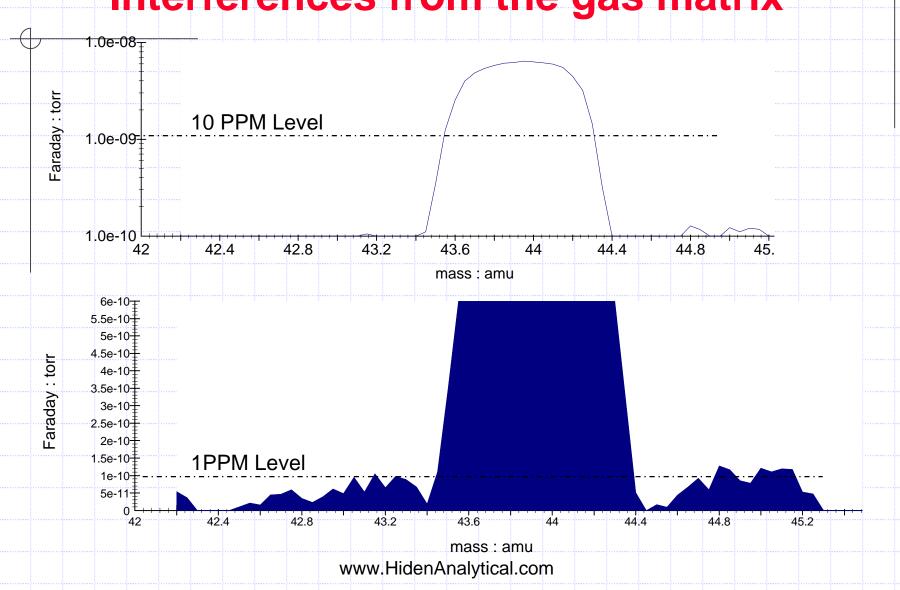
Vacuum process sampling

Dynamic Range and Sensitivity

- Quadrupole analysers have a dynamic range of in excess of 109
- Why is PPB detection not routine in all applications for all gases?
 - Spectral Interference from background species.
 - Spectral interference from the gas matrix.
 - Non ideal sample introduction.

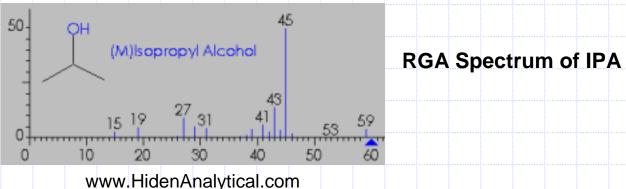
Interference from background gases

- The UHV vacuum manifold housing the quadrupole gauge has its own residual gas.
- The main components are water, hydrogen, pump oils and outgassing from the source filaments.
- A typical vacuum housing can be maintained at 1 x10⁻⁹ torr, or a factor of 5 lower with the use of cryo-panels



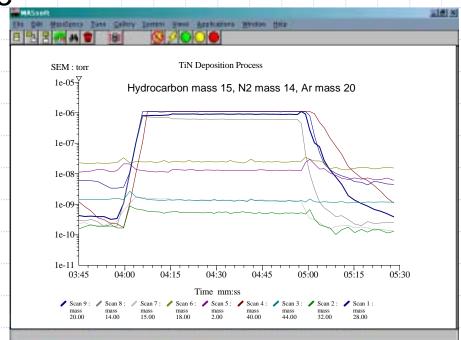
Interferences from the gas matrix

- The EI spectra from species of simple molecular structure become complex as the dynamic range is extended.
- N₂ has peaks at 7, 7.5, 14, 15, 28, 29, 30 and 42 for example.
- At PPB levels the tails from these peaks may affect the neighbouring peak as well.


Interferences from the gas matrix

Hydrocarbon Source Identification

- Backstreaming of oil vapour from pumps: Vacuum pump oils are detected at masses 57, 55 and 43, and typically have peaks through the mass range with the characteristic 14 mass separation.
- Vapour from cleaning fluid residue: Cleaning fluids have lower molecular mass than pump oils. Characteristic peaks are found at masses less than 50 amu.
- Vacuum Grease: Silicone based vacuum grease used for 'O' ring lubricant have similar characteristic peaks as pump oils.

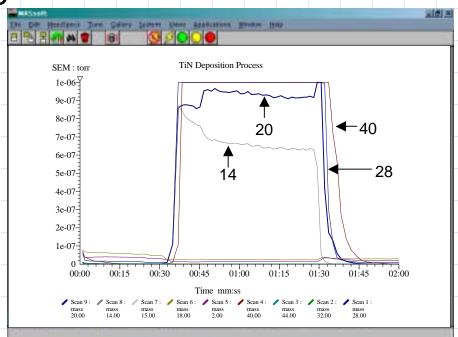


TiN Deposition: A Wafer Cycle Profile

- TiN Process Endura PVD
- Reagent Gas Levels Monitored

8mTorr process pressure

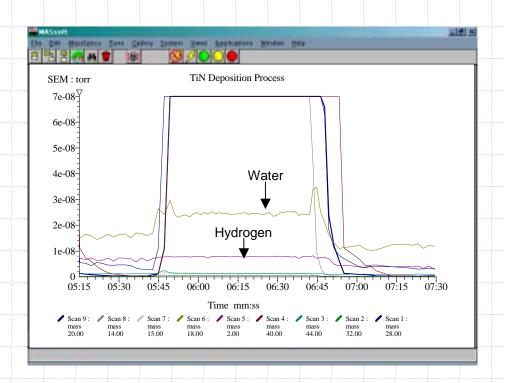
- Ultrapure Ti Target
- 60:40 N₂ to Ar



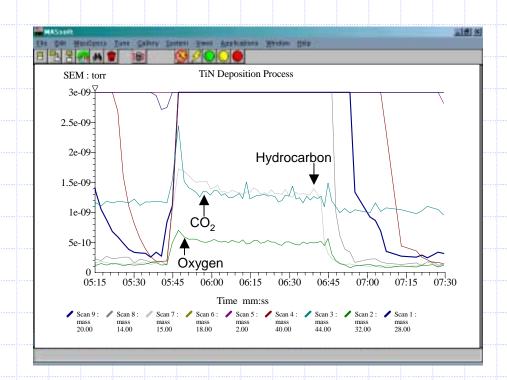
TiN Deposition: A Wafer Cycle Profile

- TiN Process Endura PVD
- Reagent Gas Levels Monitored

8mTorr process pressure


- Ultrapure Ti Target
- 60:40 N₂ to Ar

Primary Contaminant Analysis

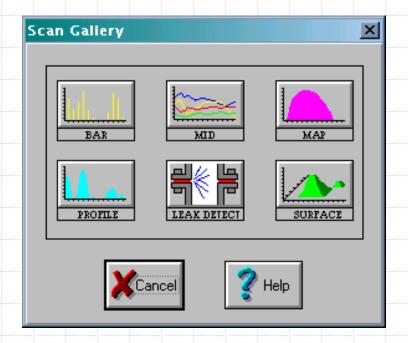

- Zoom in on the process run data to reveal the primary process contaminants
- Water at 0.1%
- Hydrogen at 0.05%

Low level process contaminants

- Further zoom to examine ppm level contaminants.
- In process hydrocarbon background at 100ppm
- CO₂ at 120ppm

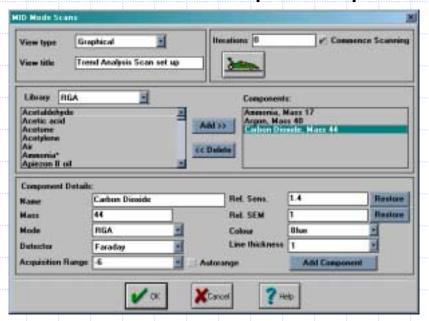
Sub PPM detection capability

- All data from major to minor constituents collected simultaneously
- Detection to sub 10⁻¹⁰ Torr
- Auto start/stop of data collection with all data saved
- Each gas may also have an independent view graph
- Process control through intelligent trips

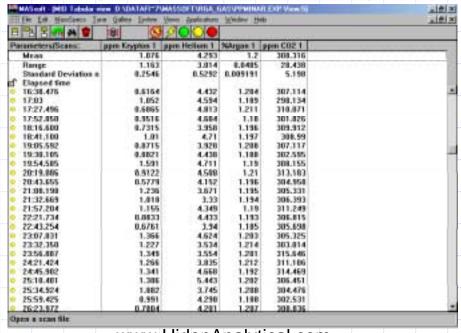

PPB Detection Levels

<u> </u>	oular view C:\HIDEN\H				180 (S)		_ 8
	cs <u>T</u> une <u>G</u> allery <u>S</u> yster	n <u>V</u> iews S <u>P</u> 0	<u>Window Help</u>				_ 8
arameters/Scans:	ppm Hydrogen 1	ppm Air 1	ppm Water 1	ppm Methane 1	ppm 0xygen 1	ppm CO2 1	
Real time							
7:57:32 pm	31	3	4	0.7	0.4	0.7	
7:58:42 pm	32		3	0.5	0.04	0.6	
7:59:55 pm	33		3	0.7	0.5	1	
8:01:14 pm	34		3	0.5	0.5	0.9	
8:02:27 pm	37	4	3	0.5	0.3	0.6	
8:03:40 pm	36		4	0.5	0.08	0.8	
8:04:53 pm	32		3	0.9	0.2	0.9	
8:06:06 pm	35		3	0.4	0.3	0.8	
8:07:19 pm	34		3	0.7	0.4	0.5	
8:08:32 pm	35		5	0.8	0.4	0.7	
8:09:57 pm	37	2	3	0.6	0.3	0.7	
8:11:15 pm	33		2	0.7	0.2	0.8	
8:12:28 pm	34		3	0.7	0.2	1	
8:13:41 pm	34		4	0.8	0.2	0.6	
8:15:00 pm	32		2	0.9	0.1	0.8	
8:16:19 pm	32	2	4	0.6	0.2	0.5	
8:17:38 pm	33		4	0.6	0.2	0.6	
8:18:51 pm	36		3	0.8	0.5	0.7	
8:20:04 pm	31		4	0.8	0.3		
8:21:23 pm	32		3	0.8	0.2	0.8	
8:22:36 pm	35		4	0.5	0.4	0.7	
8:23:49 pm	33		4	0.8	0.3	1	
8:25:02 pm	37		3	0.8	0.3	0.8	
8:26:15 pm	33		4	0.7	0.2	0.7	
8:27:40 pm	31	2	4	0.5	0.3	0.8	
8:28:59 pm	33		4	0.4	0.3	0.8	
8:30:12 pm	37		2	0.5	0.2	0.9	
8:31:25 pm	29		2	0.8	0.2		

software examples: Scan Gallery

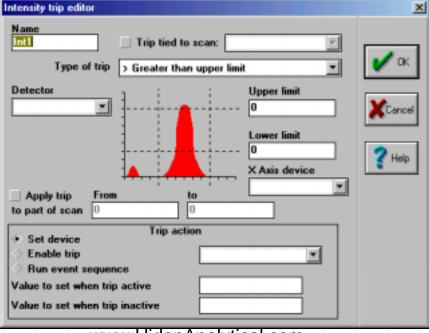

- simple 'Scan Gallery' provides rapid, easy to use set up of different types of scans.
- only 3 clicks of the mouse required to acquire mass spectra from MASsoft startup program.

software examples: Multiple Ion Detection Mode


- Scan up to 100 different masses simultaneously.
- Choose masses from the internal library.
- View data as graphical views, tabular views or both at the same time.
- Output in preferred units i.e. partial pressure, %, ppb

software examples: Tabular View

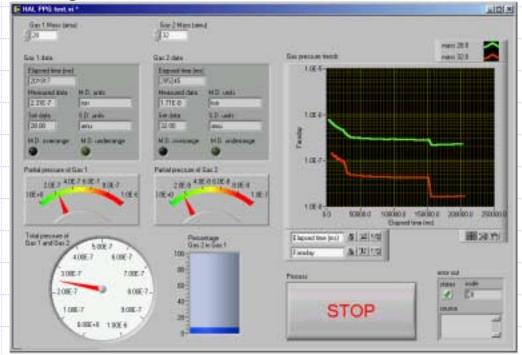
- Results as a function of time in mixed units (ppm and %).
- the yellow markers indicate the range of data that has been selected for statistical analysis.
- Mean, Range and Standard Deviation from this analysis are shown at the top of the view and updated in real time.



software examples: I/O Events Editor

• powerful Events Editor allows trip, threshold and alarm levels to be set easily on screen. Output to screen, audible beep or integral TTL and 0-10V analogue switches.

used for 'out of limit' alarm indicators or sophisticated


process control routines

software examples: LabView™ Drivers

• The Hiden drivers are automatically self-configuring, with all mass spectrometer control parameters grouped within LabVIEW[™] for convenient programming for the full application range.

why choose Hiden Analytical?

Company Profile

Hiden Analytical was founded in 1981 and is presently situated in a 23,000 sq. ft. manufacturing plant in Warrington, England with a staff

of 65 persons.

Hiden Analytical Inc, a wholly-owned subsidiary of Hiden Analytical Ltd, was formed in New Hampshire on January 1st 1996 to establish a domestic USA sales / service centre.

- sales & service on 4 continents with:
- 20 years manufacturing experience and...
- over 100 staff publications in peer reviewed journals
- over 200 user publications in peer reviewed journals

Certificate No. 6738

why choose Hiden Analytical?

Installations the following sites use Hiden Gas Analysis Systems

USA	UK/Europe	Asia Pacific		
Applied Materials	Bosch	Canon		
Axelis	Axelis IMEC			
CVC/Veeco Motorola		Hyundai		
DuPont	DuPont Nortel Networks			
General Motors	Oxford Plasma Technology	NEC		
IBM Research	Philips	Samsung		
Lawrence Livermore	Rolls Royce	Sony Corporation		
Motorola	SGS Thomson	TDK		
NIST	Siemens	Tokyo Electron		
Semetech	Surface Technology Systems	Toshiba		